Tuesday, April 30, 2013

Short- and Long-term Benefits of Cognitive Training

According to the article scientific evidence showing the increase in brain capacity due to training interventions is rare. However, some evidence suggests that specific cognitive intervention can improve brain capacity. Most cognitive training studies focus on the effect on fluid intelligence, the ability to reason abstractly. In turn, effect on fluid intelligence is predictive of educational or professional success. Often these experiment tasks target the working memory, which allows an individual to store a limited amount of information for a period of time.

The authors conducted an experiment using elementary and middle school children by assigning them with video game like tasks. The purpose of this experiment was to determine whether working memory tasks will improve untrained fluid intelligence (Gf) tasks. 62 children were trained over a one month period. The test group was presented with a series of stimuli from different locations on the computer screen. This group was tasked with deciding whether a certain stimulus has appeared more than once at the same location. The participants of the control group were tasked with answering general knowledge questions along with vocabulary questions. The tasks for both groups include video game like learning and graphic visuals. Pre- and post-training as well as training after three months, the participants’ performance was assessed using a two matrix reasoning tasks.

The results indicated that the experimental group showed an increased performance in untrained fluid-intelligence tasks. Hence, they were most successful at fluid intelligence transfer. The control group who was tasked with knowledge-based tasks did not show much improvement. The post hoc tests after three months revealed the same results. The participants with most training showed high significance in performance. No significant differences were observed in terms of sex, age, grade, number of training sessions, and initial working memory performance. Based on the results, the authors argued that the transfer of fluid intelligence depends on the amount of participant improvement on working memory tasks. Some students’ lack of improvement was associated with the lack of interest in the activities and difficulties of coping with the challenges. Finally, the study concluded that individuals may gain long-term benefits from cognitive training. No group difference in performance was seen with in the first three weeks of training. However, differences in performance emerged over time.    

The authors successfully conducted an experiment which lead to answering a question of interest. Through experimentation they found tangible evidence that cognitive training have a significant effect on working memory and long-term memory in children. These results can be confirmed by other research conducted on aging populations. However, the methodology section of the article needs to be explained better because it does not provide enough information to replicate the study. Since the participants of the experiment were elementary and middle school children, this study is not generalizable to the rest of the population. One of the important aspects of this article is that the authors mentioned the limitation of this study and proposed recommendation for future research. Rather than studying whether cognitive training is effective, future research should focus on studying conditions that best transfer effects, underlying cognitive mechanisms, and for whom cognitive exercises is most useful.   
I’m not sure how relevant cognitive exercises are to the intelligence community. Although cognitive training improves working memory/fluid intelligence and intelligence analysts may benefit from it, it may not be very practical in the implementation.                  

Jaeggi, S., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Retrieved from http://www.pnas.org/content/early/2011/06/03/11032281083/1103228108.

1 comment:

  1. I found it interesting that the effects of the video game like training were manifested over time rather than after the initial trial period. It would be interesting to see if these findings are similar when applied to an older test group, or if the increase in effectiveness was based on a combination of the training and the general development and growth of younger children. It is key to note that if there is a delayed response in the effectiveness, that that should be taken into account if brain training was to be applied in a business setting.

    It seems relevant to the intelligence community in the sense that increasing cognitive ability is beneficial to the analyst and the decision maker they are involved with. It does not appear that there is a significant change in the approach the analysts would take within the intelligence community.